1 / 18
文档名称:

2012鲁教版八上3.6《三角形内角和定理》ppt课件1.ppt

格式:ppt   页数:18
下载后只包含 1 个 PPT 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

2012鲁教版八上3.6《三角形内角和定理》ppt课件1.ppt

上传人:zhangbing32159 2014/5/8 文件大小:0 KB

下载得到文件列表

2012鲁教版八上3.6《三角形内角和定理》ppt课件1.ppt

文档介绍

文档介绍:八年级数学(上)第三章证明(一)
三角形内角和定理
胜者的“钥匙”
证明命题的一般步骤:
与同伴交流你在探索思路的过程中的具体做法.
(1)理解题意:分清命题的条件(已知),结论(求证);
回顾与思考

(2)根据题意,画出图形;
(3)结合图形,用符号语言写出“已知”和“求证”;
(4)分析题意,探索证明思路;
(5)依据思路,运用数学符号和数学语言条理清晰地写出证明过程;
(6)检查表达过程是否正确,完善.
驶向胜利的彼岸
言必有“据”
回顾与思考

?
1
A
B
D
2
3
C
(1)如图,当时我们是把∠A移到了∠1的位置,∠B移到了∠∠A和∠B,那么你还有其它方法可以达到同样的效果?
(2)根据前面的公理和定理,你能用自己的语言说说这一结论的证明思路吗?你能用比较简捷的语言写出这一证明过程吗?与同伴交流.
三角形内角和定理三角形三个内角的和等于1800.
“行家” 看“门道”
已知:如图6-9,△ABC.
求证:∠A+∠B+∠C=1800.
证明:作BC的延长线CD,过点C作CE∥AB,则
例题欣赏P89

你还有其它方法来证明三角形内角和定理吗?.
∠1=∠A(两直线平行,内错角相等),
∠2= ∠B(两直线平行,同位角相等).
又∵∠1+∠2+∠3=1800 (平角的定义),
∴∠A+∠B+∠ACB=1800 (等量代换).
分析:延长BC到D,过点C作射线CE∥AB,这样,就相当于把∠A移到了∠1的位置,把∠B移到了∠2的位置.
这里的CD,CE称为辅助线,辅助线通常画成虚线.
A
B
C
E
2
1
3
D
一题多解
在证明三角形内角和定理时,小明的想法是把三个角“凑”到A处,他过点A作直线PQ∥BC(如图),他的想法可以吗?
议一议P90
请你帮小明把想法化为实际行动.
小明的想法已经变为现实,由此你受到什么启发?你有新的证法吗?
证明:过点A作PQ∥BC,则
A
B
C
∠1=∠B(两直线平行,内错角相等),
∠2=∠C(两直线平行,内错角相等),
又∵∠1+∠2+∠3=1800 (平角的定义),
∴∠BAC+∠B+∠C=1800 (等量代换).
所作的辅助线是证明的一个重要组成部分,要在证明时首先叙述出来.
P
Q
2
3
1
“行家” 看“门道”
根据下面的图形,写出相应的证明.
试一试P91

你还能想出其它证法吗?
(1)
A
B
C
P
Q
R
T
S
N
(3)
A
B
C
P
Q
R
M
T
S
N
(2)
A
B
C
P
Q
R
M
三角形内角和定理
三角形内角和定理三角形三个内角的和等于1800.
△ABC中,∠A+∠B+∠C=1800.
∠A+∠B+∠C=1800的几种变形:
∠A=1800 –(∠B+∠C).
∠B=1800 –(∠A+∠C).
∠C=1800 –(∠A+∠B).
∠A+∠B=1800-∠C.
∠B+∠C=1800-∠A.
∠A+∠C=1800-∠B.
这里的结论,以后可以直接运用.
三种语言

A
B
C
我是最棒的
?等边三角形的一个内角是多少度?请证明你的结论.
2已知:如图在△ABC中,DE∥BC,∠A=600, ∠C=700.
求证: ∠ADE=500.
随堂练习P90

D
C
B
A
E
A
B
C
A
B
C
结论: .
用运动变化的观点理解和认识数学
在△ABC中,如果BC不动,把点A“压”向BC,那么当点A越来越接近BC时, ∠A就越来越大(越来越接近1800),而∠B和∠C,越来越小(越来越接近00).由此你能想到什么?
如果BC不动,把点A“拉离”BC,那么当A越来越远离BC时,∠A就越来越小(越来越接近00),而∠B和∠C则越来越大,它们的和越来越接近1800, 当把点A拉到无穷远时,便有AB∥AC,∠B和∠C成为同旁内角,?
读一读

C
B
A
C
B
A
用橡皮筋构成△ABC,其中顶点B、C为定点,A为动点,放松橡皮筋后,点A自动收缩于BC上,请同学们考察点A变化时所形成的一系列的三角形……其内角会产生怎样的变化呢?
看一看
结论: 当点A远离BC时,∠A越来越趋近于0°,而 AB与AC逐渐趋向平行,这时,∠B、∠C逐渐接近为互补的同旁内角,即

最近更新

2023年上海海事大学单招职业倾向性测试题库最.. 40页

2023年上海理工大学单招职业倾向性考试题库最.. 41页

2023年上海电机学院单招职业技能测试题库含答.. 39页

2026年全国甲卷 青海高考文科数学试题 4页

2023年丽水学院单招职业技能考试模拟测试卷完.. 40页

2023年乌海职业技术学院单招职业适应性考试模.. 41页

2026年全国新课标2卷 广西高考数学试题 3页

2023年云南体育运动职业技术学院单招职业技能.. 39页

2023年云南商务职业学院单招职业适应性考试题.. 41页

2023年云南城市建设职业学院单招职业技能测试.. 39页

2023年云南工程职业学院单招职业技能考试模拟.. 40页

2023年云南文化艺术职业学院单招职业适应性测.. 42页

2023年云南省怒江傈僳族自治州单招职业倾向性.. 41页

2023年云南省昭通地区单招职业适应性测试题库.. 39页

2023年仰恩大学单招职业倾向性考试模拟测试卷.. 40页

2023年伊犁职业技术学院单招职业倾向性考试题.. 40页

2023年保定幼儿师范高等专科学校单招职业技能.. 40页

2023年信阳学院单招综合素质考试题库及答案1套.. 40页

2023年信阳艺术职业学院单招职业倾向性测试题.. 41页

2023年克拉玛依职业技术学院单招职业倾向性测.. 39页

2023年四川省凉山州数学中考真题试卷【含答案.. 32页

铁路钢轨探伤车运用管理办法 21页

青岛市电梯安全运行服务规范 20页

急性特发性生理盲点扩大综合征一例 8页

川机管函〔2016〕313号 2页

公安部历任部长 9页

广东省水利工程编制办法及定额 183页

提升机设备点检登记表 4页

殊胜佛名——现世就获供养超百亿佛功德的佛号.. 19页

《库房生机》.doc 28页