1 / 11
文档名称:

mosfet功率损耗的计算.doc

格式:doc   大小:399KB   页数:11页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

mosfet功率损耗的计算.doc

上传人:2286107238 2020/8/27 文件大小:399 KB

下载得到文件列表

mosfet功率损耗的计算.doc

文档介绍

文档介绍:MOSFET功率损耗的计算摘要:本文介绍了电动自行车无刷电机控制器的热设计。其中包括控制器工作原理的介绍、MOSFET功率损耗的计算、热模型的分析、稳态温升的计算、导热材料的选择、热仿真等。关键词:、开关速度快等优点,已经被广泛地应用在电动车的控制器里。但是如果设计和使用不当,会经常损坏MOSFET,而且一旦损坏后MOSFET的漏源极短路,晶圆通常会被烧得很严重,大部分用户无法准确分析造成MOSFET损坏的原因。所以在设计阶段,有关MOSFET的可靠性设计是致关重要的。MOSFET通常的损坏模式包括:过流、过压、雪崩击穿、超出安全工作区等。但这些原因导致的损坏最终都是因为晶圆温度过高而损坏,所以在设计控制器时,热设计是非常重要的。MOSFET的结点温度必须经过计算,确保在使用过程中MOSFET结点温度不会超过其最大允许值。、长寿命、低噪声等优点,已在各领域中得到了广泛应用,其工作原理也已被大家广为熟知,这里不再详述。国电动车电机控制器通常工作方式为三相六步,功率级原理图如图1所示,其中Q1,Q2为A相上管及下管;Q3,Q4为B相上管及下管;Q5,Q6为C相上管及下管。MOSFET全部使用AOT430。MOSFET工作在两两导通方式,导通顺序为Q1Q4→Q1Q6→Q3Q6→Q3Q2→Q5Q2→Q5Q4→Q1Q4,控制器的输出通过调整上桥PWM脉宽实现,PWM频率一般设置为18KHz以上。当电机及控制器工作在某一相时(假设B相上管Q3和C相下管Q6),在每一个PWM周期,有两种工作状态:状态1:Q3和Q6导通,电流I1经Q3、电机线圈L、Q6、电流检测电阻Rs流入地。状态2:Q3关断,Q6导通,电流I2流经电机线圈L、Q6、Q4,此状态称为续流状态。在状态2中,如果Q4导通,则称控制器为同步整流方式。如果Q4关断,I2靠Q4体二极管流通,则称为非同步整流工作方式。流经电机线圈L的电流I1和I2之和称为控制器相电流,流经电流检测电阻Rs的平均电流I1称为控制器的线电流,所以控制器的相电流要比控制器的线电流要大。,当电机堵转时,控制器的MOSFET损耗达到最大(假设控制器为全输出时)。为了分析方便,我们假设电机堵转时B相上管工作在PWM模式下,C相下管一直导通,B相下管为同步整流工作方式(见图1)。电机堵转时的波形如图2-图5所示。功率损耗计算如下::(t1-t2),见图2;(t3-t4),见图3;(t5-t6),见图4;B相上管总损耗:Phs(Bphase)=Phs(turnon)+Phs(turnoff)+Phs(on)=++=:(t7-t8),见图5;PLS(Bphase)=PLS(freewheel)=I2×Rds(on)×(1-D)=402××(1-20/64)=,所以功率损耗计算如下:PLS(Cphase)=PLS(on)=I2×Rds(on)=402×=24W控制器的功率管总损耗为:Ptatal=PHS(Bphase)+PLS(Bphase)+PLS(Cphase)=++24=-220典型的安装结构及热模型。热阻与电阻相似,所以我们可以将Rth(ja)看着几个小的电阻串联,从而有如下公式:Rth(ja)=Rth(jc)+Rth(ch)+Rth(ha)其中:Rth(jc)---结点至MOSFET表面的热阻Rth(ch)---MOSFET表面至散热器的热阻Rth(ha)---散热器至环境的热阻(与散热器的安装方式有关)图6热阻模型通常热量从结点至散热器是通过传导方式进行的,从散热器至环境是通过传导和对流方式。Rth(jc)是由器件决定的,所以对一个系统,如果MOSFET已确定,为了获得较小的热阻我们可以选择较好的热传导材料并且将MOSFET很好地安装在散热器上。:Tjmax=175℃Rth(jc)max=℃/(因为电机在运行时,上管和下管只有三分之一的时间工作,所以平均功率应除以3):