文档介绍:初高中数学衔接中的问题分析和对策探索
重庆七中高2011级数学备课组
执笔人:陶云
今年七中收生1300人成绩跨度从700分至300分,学生层次差异较大,班级从重点班、宏志班、区县班到平行班、足球班共23个班,班级结构复杂,特别是平行班从300分到680多分,因此造成教师教学难度较大,学生学习数学较为困难的局面。本备课组共有11位教师,其中五位班主任均上两个班的数学,其余五位上两个班,一位上三个班,工作任务繁重,工作量较大,尽管如此,我们本学期前六周做了较多工作,较好地完成了工作,下面就高一初高中衔接作简单介绍,起到抛砖引玉的作用。
一、初、高中数学衔接的问题分析:
1教材内容方面:
①初中数学教材较通俗易懂,难度相对高中较小,大多研究的是常量,且较多的侧重于定量计算,而高中数学教材较多的研究的是变量,不但注重定量计算,而且还常需作定性研究。
②为了适应义务教育要求,初中数学教材降低幅度较大,而高中由于受客观上升学压力和评价标准的影响,实际难度难以下降,且又增加了应用性的知识,因此在一定程度上,反而加大了高、初中数学教材内容的台阶。
③部分教学内容已由原来的初中讲授移到高中讲授(如常用对数、二次函数的图象法),而高中一些教师对调整后的大纲要求认识不够,而对编在附录内的内容认为初中讲了,而未讲这部分知识,形成了初、高中两不管的教材,给学生后继过程学习带来了极大的困难。
初高中衔接,不是单纯的知识衔接,更不是买一本“衔接教程”,利用暑假提前上课,,是一个严肃、重要的教学任务,通过调查分析研究,整理出一份与以前知识、高中教师原有认知相比的需要衔接设想,供新课程教学实施的教师参考.
下面列出初高中教材的对比
、高中教师原有认知相比认为存在但初中已删除需衔接的内容 
知识点
具体衔接内容与要求
常用乘法公式与因式分解方法
立方和公式、立方差公式、两数和立方公式、两数差立方公式、三个数的和的平方公式,推导及应用(正用和逆用),熟练掌握十字相乘法、简单的分组分解法,高次多项式分解(竖式除法)
分类讨论
含字母的绝对值,分段解题与参数讨论,含字母的一元一次不等式
二次根式
二次根式、最简二次根式、同类根式的概念与运用,根式的化简与运算
代数式运算与变形
分子(母)有理化,多项式的除法(竖式除法),分式拆分,分式乘方
方程与方程组
简单的无理方程,可化为一元二次方程的分式方程,含绝对值的方程,含有字母的方程,双二次方程,多元一次方程组,二元二次方程组,一元二次方程根的判别式与韦达定理,巩固换元法
一次分式函数
在反比例函数的基础上,结合初中所学知识(如:平移和中心对称)来定性作图研究分式函数的图象和性质,巩固和深化数形结合能力
三个“二次”
熟练掌握配方法,掌握图象顶点和对称轴公式的记忆和推导,熟练掌握用待定系数法求二次函数的解析式,用根的判别式研究函数的图象与性质,利用数形结合解决简单的一元二次不等式
平行与相似
介绍平行的传递性,平行线等分线段定理,梯形中位线,合比定理,等比定理,介绍预备定理的概念,有关简单的相似命题的证明,截三角形两边或延长线的直线平行于第三边的判定定理
直角三角形中的计算和证明
补充射影的概念和射影定理,巩固用特殊直角三