文档介绍:浅谈建模思想在小学数学中的应用
北京市东城区北池子小学杨晓蕾
在《北京教育丛书》《中学数学建模的理论与教学实践》中我看到这样一段文字:“犹豫数学应用和数学建模在培养学生创新精神和实践能力方面起着重要的作用,因此中学数学(课内外)教学中郑家数学知识应用于数学建模的内容是对传统数学教学的一个重大变革。”这段话使我陷入了沉思中,那么作为中学基础的小学阶段是不是也需要这样的变革呢?答案是显而易见的,我们需要。新颁布的《全日制义务教育数学课程标准》(实验稿)在阐述总体目标时明确指出:“通过义务阶段的数学学习,使学生初步学会运用数学思维方式去观察、分析现实社会,去了解日常生活中和其他学科学习中的问题,增强应用数学的意识。体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。”在阐述基本理念时强调:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理和交流等数学活动。”但是建模思想在小学阶段又应该如何应用辅助教学呢?
要实现《全日制义务教育数学课程标准》提出的教学目标,除了转变教学观念、改进教学方法以外,还必需在课堂教学的模式上有所突破。只有当教学内容与课堂教学的模式完全吻合时才能发挥其课堂教学的最大效能。以目前的应用题教学为例,我们总感到教学效果不理想,究其原因,有一个不可忽略的因素那就是教材所提供的教学内容老师们很难找到一种与此相适应的课堂教学的模式。从《全日制义务教育数学课程标准》的内容标准中可以发现它所提供的教学内容不但是现实的、贴近学生生活实际的,而且呈现的方式也是丰富多彩的。针对这样的教学内容本人认为在小学数学教学中可以尝试数学建模教学。
自然数是表述有限集合“数数”过程的数学模型;分数是平均分派物品的数学模型;元角分的计算模型是小数的运算;500人的学校里一定有2个人一起过生日,其数学模型叫做抽屉原理……从这个意义上我们每堂数学课都在建立数学模型。
以“解决问题的策略”为例,我们来谈一谈对小学生如何形成数学建模思想的思考。
本课教学中的替换策略,包括倍数关系的等量替换和相差关系的等量替换。教学的重点是让学生充分理解替换策略的意义:把两种量替换成一种量,从而顺利的解决问题。难点是学生不易理解相差关系的等量替换,以及在解决问题时,不知道该用什么方法来替换。基于以上理解,我认为在教学中应建立模型,运用模型帮助学生解决这类问题。
一、小学数学建模思想的形成
1、创设情境,感知数学建模思想。
在实际教学中,先出示例题,让学生分析题中的数量关系,得出:6个小杯和1个大杯一共是720毫升;一个大杯的容量相当于3个小杯的容量。在此基础上,出示例题图,引导学生用画图初步感知:解决这个问题就需要根据大杯容量与小杯容量之间的关系,进行一定的等量替换。
  接着,我向学生提出这样一个问题:如果这样的大杯和小杯有很多个,那么能用这种画图方法解决吗?答案是肯定的。我们只要抓住把两种量替换成一种量就可以了。
  在这个教学过程中,学生通过寻找数量关系以及观察主题图,得出:解决这个问题需要把两种杯子换成一种杯子(即替换)。然后引导学生根据主题图画出示意图,即把直观图形抽象成几何图形,在抽象概括的基础上,学生逐步理解替换的策略。学生把直观图形抽象成几何图形的过程,其实