文档介绍:初二实数的思维导图欣赏利用思维导图边思考边画可以有效帮助我们学习数学。今天我为大家带来了,一起来看看吧!初二实数的思维导图初二实数的知识点1、实数的概念及分类①实数的分类②无理数无限不循环小数叫做无理数。在理解无理数时,要抓住"无限不循环"这一时之,归纳起来有四类:开方开不尽的数,如7,32等;有特定意义的数,如圆周率,或化简后含有的数,如/+8等;有特定结构的数,...等;某些三角函数值,如sin60等2、实数的倒数、相反数和绝对值①相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。②绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。|a|0。0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a0;若|a|=-a,则a0。③倒数如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。0没有倒数。④数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。⑤估算3、平方根、算数平方根和立方根①算术平方根一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。性质:正数和零的算术平方根都只有一个,0的算术平方根是0。②平方根一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方求一个数a的平方根的运算,叫做开平方。注意a的双重非负性:a0;a0③立方根一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(或三次方根)。表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:-3a=3-a,这说明三次根号内的负号可以移到根号外面。4、实数大小的比较①实数比较大小正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。②实数大小比较的几种常用方法初二实数的相关定义实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。所有实数的集合则可称为实数系(realnumbersystem)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数