文档介绍:精品文档,仅供学习与交流,如有侵权请联系网站删除
【精品文档】第 - 1 - 页
第一节 集 合
1.集合:某些指定的对象集在一起成为集合
(1)集合中的对象称元素,若a是集合A的元素,记作;若b不是集合A的元素,记作
(2)集合中的元素必须满足:确定性、互异性与无序性;
确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;
互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;
无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;
(3)表示一个集合可用列举法、描述法或图示法;
列举法:把集合中的元素一一列举出来,写在大括号内;
描述法:把集合中的元素的公共属性描述出来,写在大括号{}内
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(4)常用数集及其记法:
非负整数集(或自然数集),记作N;
正整数集,记作N*或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R
2.集合的基本关系:
(1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作AB(或);
集合相等:构成两个集合的元素完全一样。若AB且BA,则称A等于B,记作A=B;若AB且A≠B,则称A是B的真子集,记作 A B;
(2)简单性质:1)AA;2)A;3)若AB,BC,则AC;4)若集合A是n个元素的集合,则集合A有2n个子集(其中2n-1个真子集);
(3)集合的基本关系以列表的形式表示如下:
3.全集与补集:
(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U;
(2)若S是一个集合,AS,则,=称S中子集A的补集;
(3)简单性质:1)()=A;2)S=,=S
4.交集与并集:
(1)一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集。交集
精品文档,仅供学习与交流,如有侵权请联系网站删除
【精品文档】第 - 2 - 页
(2)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。
注意:①求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法
②集合的基本运算以列表的形式表示如下:
③常见集合的意义
集合
{x|f(x)=0}
{x|f(x)>0}
{x|y=f(x)}
{y|y=f(x)}
{(x,y)|y=f(x)}
集合的
意义
方程f(x)=0的解集
不等式f(x)>0的解集
函数y=f(x)的定义域
函数y=f(x)的值域
函数y=f(x)的图象上的点集