文档介绍:定积分的概念
:在直角坐标系中,由连续曲线y=f(x),直线x=a、x=b及x轴所围成的图形叫做曲边梯形。
O
x
y
a
b
y=f (x)
一. 求曲边梯形的面积
x=a
x=b
因此,我们可以用这条直线L来代替点P附近的曲线,也就是说:在点P附近,曲线可以看作直线(即在很小范围内以直代曲).
P
放大
再放大
P
P
y = f(x)
b
a
x
y
O
A1
A
A1.
用一个矩形的面积A1近似代替曲边梯形的面积A,
得
A
A1+ A2
用两个矩形的面积近似代替曲边梯形的面积A, 得
y = f(x)
b
a
x
y
O
A1
A2
A A1+ A2+ A3+ A4
用四个矩形的面积近似代替曲边梯形的面积A, 得
y = f(x)
b
a
x
y
O
A1
A2
A3
A4
y = f(x)
b
a
x
y
O
A A1+ A2 + + An
将曲边梯形分成 n个小曲边梯形,并用小矩阵形的面积代替
小曲边梯形的面积, 于是曲边梯形的面积A近似为
A1
Ai
An
——以直代曲,无限逼近
求曲边梯形的面积即
求下的面积
——分成很窄的小曲边梯形,
然后用矩形面积代后求和。
若“梯形”很窄,
可近似地用矩形面积代替
——以直代曲
=x2、直线x=1和x轴所围成的曲边梯形的面积。
解把底边[0,1]分成n等份,然后在每个分点作底边的垂线, 这样曲边三角形被分成n个窄条, 用矩形来近似代替,然后把这些小矩形的面积加起来, 得到一个近似值:
因此, 我们有理由相信, 这个曲边三角形的面积为: