1 / 35
文档名称:

配电网无功补偿.doc

格式:doc   大小:2,248KB   页数:35页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

配电网无功补偿.doc

上传人:Alone-丁丁 2022/9/27 文件大小:2.20 MB

下载得到文件列表

配电网无功补偿.doc

文档介绍

文档介绍:该【配电网无功补偿 】是由【Alone-丁丁】上传分享,文档一共【35】页,该文档可以免费在线阅读,需要了解更多关于【配电网无功补偿 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。配电网无功补偿
0
配电网无功补偿技术研究
2012/04/11
0
目录
第一章绪论 3
3
4
第二章无功功率 5
5
5
7
第三章无功优化 9
9
11
12
13
15
第四章无功补偿 17
17
18
18
19
22
结论 26
致谢 错误!未定义书签。
参考文献 错误!未定义书签。
0
第一章绪论

传统的功率定义大都建立在均值的基础上的。单相正弦电路或者三相对称正弦电路中,利用传统概念定义的有用功率、无用功率、视在功率、和功率因数的概念都很清楚。但当电压或者电流含有谐波时,或三相电路不平衡时,功率现象比较复杂,传统的概念无法正确的对她作出解释和描述。建立能包含畸变和不平衡现象的完善的功率理论,是电路理论中的一个重要的基础课题。
学术界有关功率理论的争论可以追溯到20世纪20和30年代,Eudeanu和Fryze最早分别提出在频域定义和时域定义的方法,以后又有各种定义和理论不断出现。20世纪80年代以来,新的定义和理论更是不断推出。自1991年以来,已多次举办了专门的讨论非正弦情况下功率定义和测量问题的国际会议,但迄今为止仍未找到解决问题的理论和方法。新的理论往往是解决了前人未解决的问题,同时却也存在着另一些不足,或引出了新的待解决的问题。对新提出的功率定义和理论应具有如下要求:
(1)物理意义明确,能清晰地解释各种功率现象,并能在某种程度上与传统概念理论一致。
(2)有利于对谐波源和无功功率的辨别和分析,有利于对谐波和无功功率的流动的理解。
(3)有利于对谐波和无功功率的补偿和抑止,并能为其提供理论指导。
(4)能够被精确测量,有利于有关谐波和无功功率的检测、管理和收费。
根据上述要求,可将现有的无功功率理论分为图1-1所示的三大类。迄今为止各种无功功率定义和理论只解决一两方面的问题不能满足全部需求。Czarnecki和Depenbrock的工作对第一类功率理论一两解决起了较大的促进作用。,无功补偿装置的研究开发起到了很大的推动作用。但这一理论的物理意义较为模糊,与传统理论的关系不够明确,在解决的一类问题和第三类问题时有一定困难。对第三类理论问题的研究虽然取得了一定的成果,但迄今没有较大突破。总之如果建立更为完善的功率定义和理论,特别是为供电企业和电力用户广泛接受,还需要进行更多的努力。
1
各种功率理论
第一类
适应与谐波和无功功率的识别
第二类
适应于谐波和无功功率的补偿和抑制
第三类
适应于仪表测量和电能的管理、收费
图1-1

传统的无功补偿是用普通开关将电容器或者电抗器投入电网,它会产生很大的冲击电流,而且,将电容器从电路中切除时,会产生拉弧现象,现已被动态补偿装置逐渐代替。早期的动态补偿装置是同步调相机SC,它是用来专门产生无功功率的同步电动机,它能产生不同大小容性或者感性的无功功率。70年代以来,同步调相机已经开始逐渐被静止无功补偿装置(SVC)所代替。1977年美国GE公司首次在实际电力系统中演示运行其使用了晶闸管的静止无功补偿装置。1978年,在美国电力研究院的支持下,美国西屋电气公司制造的使用晶闸管的静止无功补偿装置投入实际使用。静止无功补偿装置包括晶闸管控制的电抗器(TCR)和晶闸管投切电容器(TSC)以及两者的混合装置TCR+TSC,或者晶闸管控制电抗器和固定电抗器(FC)或机械投切电容器(MSC)混合使用的装置。在国内SVC越来越广泛的被应用于电力系统中,成为电力系统中支持电网电压的重要手段。
2
第二章无功功率

电网中电力设备大多是根据电磁原理工作的,他们能在能量交换中建立交变的磁场,在一个周期内吸收的功率和释放的功率相等。但电源能量再通过纯电感或纯电容电路时并没有能量消耗,仅仅在用电负荷与电源之间进往复交换,由于这种交换功率不对外做功,因此成为无功功率。无功功率反映了内部与外部往返交换的能量情况,但并不像有功功率那样表示单位时间内所做的平均功率,无功功率的符号用Q表示,单位为乏(var)、千乏(Kvar)、兆乏(Mvar)。

前面说过,无功功率只是描述能量交换的幅度,并不消耗功率,图2-1的单相电路就是这一方面的例子,其负载为感性负载。电阻消耗有用功,而电感则在一周期内的一部分时间内把从电源吸收的能量储存起来,另一部分时间再把储存的能量向电源和负载释放,并不消耗能量。无功功率的大小表示了电源和负载电感之间能量交换的幅度。电源向负载提供这种无功功率是阻感负载内的需要,同时对电源的输出带来一定的影响。
图2-1
图2-2是带有负载的三相电路,为了和图2-1相对照,假设U、R、L的参数均和2-1相同,为对称三相电路。这是无功功率的大小当然表示了电源和负载电感之间的能量交换幅度。无功能量在电源和负载间来回流动。同时,可以证明,各项的无功功率分量()的瞬时值之和在任一时刻都为零。因此,也可以认为无功能量是在三相之间流动。这种流动是通过阻感负载进行的。
3
图2-2
图2-2是一个静止无功发生器电路(SVG)。通过对各半导体开关器件的适当控制,其电源电流的相位可以比电压超前,使SVG发出的无功功率或吸收无功功率。在进行PWM控制时,如果开关频率足够高C的容量就可以足够小。因此,C可以不被看成储能元件。同样,只要开关频率足够高,SVG交流侧电感L也可以足够小,L也不是交换无功能量意义上的电感。因此,这种电路可以近似看成无储能元件的电路。这时,无功能量的交换就不能看成是在电源和负载储能元件之间进行的。因为各相无功分量的瞬时值之和在任一时刻都为零。因此,仍可以认为无功能量在三相之间流动。事实上,三相三线电路无论对称还是不对称,无论含谐波还是不含谐波,各无功分量的瞬时值都为零。这一结论是普遍成立的,因此,可以认为无功能量是在三相之间流动的。
图2-3a
图2-3a是带有电阻负载的单相桥式可控整流电路,图2-3b是时u和i的波形。这时电路的有功功率为
4
图2-3b
电流i的有效值为
功率因数为
无功功率Q为
其无功功率一部分是由基波电流移相产生的,另一部分是由谐波电流产生的。因为负载中没有储能元件,而且是单相电路,所以,这里没有上述意义上的无功能量的流动,其无功功率是由电路非线性产生的。

传统的无功功率是由储能元件引起的负荷与电源之间能量交换的最大值,是负荷与电源间交换能量的一种度量。但随着科学技术的发展,许多非储能元件也会吸收无功这主要是器件的非线性引起的。电力系统中的无功消耗主要来自两个方面,一是输电线路自身消耗的无功,另一方面是负荷消耗的无功。输电设备在输送电能时要吸收一定的无功,在高压配电网络中为了提高电网的输送容量和系统的稳定性一般会对这部分无功进行补偿,如对线路进行串联补偿,一些重要的节点进行并联补偿。负荷吸收的负载主要是指感性负载和大量的非线性负荷消耗无功,如工业生产和日常生活中使用的异
6