1 / 5
文档名称:

数学史与数学文化.doc

格式:doc   页数:5页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

数学史与数学文化.doc

上传人:nb6785 2015/10/5 文件大小:0 KB

下载得到文件列表

数学史与数学文化.doc

文档介绍

文档介绍:数学史与数学文化
姓名:钱凯敏
学号:11231016
班级:土木1102
单位:土木建筑工程学院
时间:2013年12月9日
论数学史与数学文化的重要性
[摘要]:数学史与数学文化包括介绍数学的发展状况、数学家生平、数学家高贵品质和数学成就等等,内容十分丰富。数学史与数学文化能激发学生学习数学的兴趣,是学生学习数学的动力,在帮助学生感悟科学方法,培养创新意识等方面有非常重要的价值。
[关键词]: 数学史数学教学应用
一、以数学史例激发学生学习数学的兴趣和热情
认识兴趣是青少年在学习过程中的一个重要心里特征,也是学习动机中最现实最活跃的部分,是促成学生学习的重要因素。抓住中学生的这一特点,利用数学史提出问题,促成学生思考,由此引入新课,能使学生尽快进入学习数学的情景之中,获得鲜明、生动、深刻的印象。比如说我在上初三年级有关圆的计算这个内容的时候,我首先给学生讲讲圆的圆周率π,求算圆周率的值是数学中一个非常重要也是非常困难的研究课题,中国古代许多数学家都致力于圆周率的计算,魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即“割圆术”),。在公元5世纪,祖冲之在前人的基础上经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数(),并得出了圆周率分数形式的近似值。祖冲之计算得出的圆周率,外国数学家获得同样结果,已是一千多年以后的事了。学生听了很兴奋,觉得中国数学在古代时处于领先的地位。这样的史实不仅让学生对圆周率印象深刻,同时还引发学生学载了人类揭开世界奥秘和令人兴奋的探索历程。老师能抓住学生的心理,穿插一些数学史的材料,就会收到好的效果。
二、数学史能使学生正确理解数学概念和数学定理
多数的数学概念和数学定理的形成都离不开当时的历史条件,都少不了数学家科学思想的逻辑发展的历史行程。回顾这些数学概念、数学定律逐渐建立的历史过程,可帮助中学生正确理解概念的内涵,正确运用数学定律来解决实际问题。比如说我在上无理数这一节内容的时候,我首先给学生讲无理数的由来:公元前500年,古希腊毕达哥拉斯学派的弟子希勃索斯发现了一个惊人的事实,若一个正方形边长是1,则对角线的长不是一个有理数,这一结论与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。希勃索斯因此被囚禁,受到百般折磨,最后竞遭到沉舟身亡的惩处。因此,不可通约的本质是什么?长期以来众说纷坛,得不到正确的解释,两个不可通约的比值也一直被认为是不可理喻的数。还有15世纪意大利著名画家达·芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。然而,真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希勃索斯这位为真理而献身的可敬学者,就把不可通约的量取名为“无理数”——这便是“无理数”的由来。再如,我在上勾股定理这一节时,先给学生讲个小故事,在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨
。由于