文档介绍:专题七一元二次方程根的判别式应用探讨
一元二次方程,就是只有一个未知数且未知数最高次数为2的整式方程,其一般形式为ax2+bx+c=0(a≠0)。在系数a≠0的情况下,Δ=b2-4ac>0时,方程有2个不相等的实数根;Δ=b2-4ac =0时,方程有两个相等的实数根;Δ=b2-4ac <0时,方程无实数根。反之亦然。因此,Δ=b2-4ac称为一元二次方程根的判别式。
根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,解题过程中要注意隐含条件a≠0。使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
其应用归纳为直接应用和综合应用两方面,直接应用包括①不解一元二次方程,判断(证明)根的情况、②根据方程根的情况,确定待定系数的取值范围、③限制一元二次方程的根与系数关系的应用;综合应用包括④判断二次三项式是完全平方式时的待定系数、⑤判断双曲线与直线的公共点个数、⑥判断抛物线与直线(含x轴)的公共点个数。
,判断(证明)根的情况:
典型例题:例1:(2011江苏苏州3分)下列四个结论中,正确的是【】
(其中a为常数,且)有两个不相等的实数根
【答案】D。【考点】一元二次方程根的判别式。
【分析】把所给方程整理为一元二次方程的一般形式,根据根的判别式判断解的个数即可:
A、整理得:,△=0,∴原方程有2个相等的实数根,选项错误;B、整理得:,△<0,∴原方程没有实数根,选项错误;C、整理得:,△=0,∴原方程有2个相等的实数根,选项错误;
D、整理得:,当时, ,∴原方程有2个不相等的实数根,选项正确故选D。
二. 根据方程根的情况,确定待定系数的取值范围:
典型例题:例1:(2012湖北襄阳3分)如果关于x的一元二次方程有两个不相等的实数根,那么k的取值范围是【】
< <且k≠0 C.﹣≤k< D.﹣≤k<且k≠0
【答案】D。【考点】一元二次方程定义和根的判别式,二次根式有意义的条件。
【分析】由题意,根据一元二次方程二次项系数不为0定义知: k≠0;根据二次根式被开方数非负数的条件得:2k+1≥0;根据方程有两个不相等的实数根,得△=2k+1﹣4k>0。三者联立,解得﹣≤k<且k≠0。故选D。
例2:(2012湖北孝感12分)已知关于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求证:无论m取何值,原方程总有两个不相等的实数根;
(2)若x1、x2是原方程的两根,且|x1-x2|=2,求m的值和此时方程的两根。
【答案】解:(1)证明:由关于x的一元二次方程x2+(m+3)x+m+1=0得
△=(m+3)2-4(m+1)=(m+1)2+4,
∵无论m取何值,(m+1)2+4恒大于0,
∴原方程总有两个不相等的实数根。
(2)∵x1,x2是原方程的两根,∴x1+x2=-(m+3),x1•x2=m+1。
∵|x1-x2|=2, ∴(x1-x2)2=8,即(x1+x2)2-4x1x2=8。
∴[-(m+3)]2-4(m+1)=8,即m2+2m-3=0。
解得:m1=-3,m2=1。
当m=-3时,原方程化为:x2-2=0,解得:x1= ,x2=-。
当m=1时,原方程化为:x2+4x+2=0,解得:x1=-2+ ,x2=-2-。
【考点】一元二次方程根的判别式和根与系数的关系。
【分析】(1)根据关于x的一元二次方程x2+(m+3)x+m+1=0的根的判别式△=b2-4ac的符号来判定该方程的根的情况。
(2)根据根与系数的关系求得x1+x2和x1•x2,由已知条件|x1-x2|=2平方后可以得到关于x1+x2和x1•x2的等式,从而列出关于m的方程,通过解该方程即可求得m的值,最后将m值代入原方程并解方程。
例3:(2012四川成都4分)有七张正面分别标有数字-3,-2,-1,0,l,2,3的卡片,,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程有两个不相等的实数根,且以x为自变量的二次函数的图象不经过点(1,0)的概率是▲。
【答案】。考点】二次函数图象上点的坐标特征,根的判别式,解一元二次方程和一元一次不等式,概率公式。
【分析】∵有两个不相等的实数根,∴△>0。
∴[﹣2(a﹣1)]2﹣4a(a﹣3)>0,∴a>﹣1。
将(1,0)代入得,a2+a﹣2=0,解得a1=1,a2=﹣2。
可见,符合要求的点为0,2,3。∴P(符合要求)=。
练习1. (2012山东日照4分)已知关于x的一元二次