文档介绍:椭圆的简单几何性质(1)
一、复习回顾:
:
到两定点F1、F2的距离之和为常数(大于|F1F2 |)的动点的轨迹叫做椭圆。
:
,b,c的关系:
a2=b2+c2
当焦点在X轴上时
当焦点在Y轴上时
二、椭圆简单的几何性质
1、范围:
-a≤x≤a, -b≤y≤b
椭圆落在x=±a,y= ± b组成的矩形中
o
y
B2
B1
A1
A2
F1
F2
c
a
b
椭圆的对称性
Y
X
O
P(x,y)
P1(-x,y)
P2(-x,-y)
2、对称性:
o
y
B2
B1
A1
A2
F1
F2
c
a
b
从图形上看,椭圆关于x轴、y轴、原点对称。
从方程上看:
(1)把x换成-x方程不变,图象关于y轴对称;
(2)把y换成-y方程不变,图象关于x轴对称;
(3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中心对称。
3、椭圆的顶点
令 x=0,得 y=?,说明椭圆与 y轴的交点?
令 y=0,得 x=?说明椭圆与 x轴的交点?
*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。
*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。
a、b分别叫做椭圆的长半轴长和短半轴长。
o
y
B2
B1
A1
A2
F1
F2
c
a
b
(0,b)
(a,0)
(0,-b)
(-a,0)
1
2
3
-1
-2
-3
-4
4
y
1
2
3
-1
-2
-3
-4
4
y
1
2
3
4
5
-1
-5
-2
-3
-4
x
1
2
3
4
5
-1
-5
-2
-3
-4
x
根据前面所学有关知识画出下列图形
(1)
(2)
A1
B1
A2
B2
B2
A2
B1
A1
4、椭圆的离心率
离心率:椭圆的焦距与长轴长的比
叫做椭圆的离心率。
[1]离心率的取值范围:
[2]离心率对椭圆形状的影响:
0<e<1
1)e 越接近 1,椭圆就越扁;
2)e 越接近 0,椭圆就越圆。
[3]e与a,b的关系:
标准方程
范围
对称性
顶点坐标
焦点坐标
半轴长
离心率
a、b、c的关系
|x|≤ a,|y|≤ b
关于x轴、y轴成轴对称;关于原点成中心对称
(a,0)、(-a,0)、(0,b)、(0,-b)
(c,0)、(-c,0)
长半轴长为a,短半轴长为b. a>b
a2=b2+c2
标准方程
范围
对称性
顶点坐标
焦点坐标
半轴长
离心率
a、b、c的关系
|x|≤ a,|y|≤ b
关于x轴、y轴成轴对称;关于原点成中心对称
(a,0)、(-a,0)、(0,b)、(0,-b)
(c,0)、(-c,0)
长半轴长为a,短半轴长为b. a>b
a2=b2+c2
|x|≤ b,|y|≤ a
同前
(b,0)、(-b,0)、(0,a)、(0,-a)
(0 , c)、(0, -c)
同前
同前
同前