1 / 23
文档名称:

Deformations and Morphology Changes Associated with the 2016–2017 Eruption Sequence at Bezymianny Volcano, Kamchatka René Mania.pdf

格式:pdf   大小:4,307KB   页数:23页
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

Deformations and Morphology Changes Associated with the 2016–2017 Eruption Sequence at Bezymianny Volcano, Kamchatka René Mania.pdf

上传人:抱琴 2023/8/3 文件大小:4.21 MB

下载得到文件列表

Deformations and Morphology Changes Associated with the 2016–2017 Eruption Sequence at Bezymianny Volcano, Kamchatka René Mania.pdf

相关文档

文档介绍

文档介绍:该【Deformations and Morphology Changes Associated with the 2016–2017 Eruption Sequence at Bezymianny Volcano, Kamchatka René Mania 】是由【抱琴】上传分享,文档一共【23】页,该文档可以免费在线阅读,需要了解更多关于【Deformations and Morphology Changes Associated with the 2016–2017 Eruption Sequence at Bezymianny Volcano, Kamchatka René Mania 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。:..remotesensingArticleDeformationsandMorphologyChangesAssociatedwiththe2016–2017EruptionSequenceatBezymiannyVolcano,KamchatkaRenéMania1,*,,MarinaBelousova2,,eosciences,Telegrafenberg,14473Potsdam,Germany;******@gfz-,FarEastBranch,RussianAcademyofSciences,Piipaboulevard,9,683006Petropavlovsk-Kamchatskii,Russia;chikurachki1@(.);******@(.)3KamchatkanBranchofGeophysicalSurvey,RussianAcademyofSciences,Piipaboulevard,9,683006Petropavlovsk-Kamchatskii,Russia;******@*Correspondence:rene.******@gfz-;Tel.:+49-331-288-28665Received:29April2019;Accepted:24May2019;Published:29May2019Abstract:Lavadomesgrowbyextrusionsandintrusionsofviscousmagmaofteninitiatingfromacentralvolcanicvent,andtheyarefrequentlyde?,closemonitoringofdomebuildingprocessesiscrucial,butoftenlimitedtolowdataresolution,ess,,weinvestigatedthe2016–2017eruptivesequenceofthedomebuildingBezymiannyvolcano,Kamchatka,withspot-modeTerraSAR-Xacquisitions, setmeasurementsshow>7monthsofprecursoryplugextrusion,beinglocallyde?nedandexceeding30mofdeformation,chie?,?cantlygovernedbymagmasupplyrateandshallowupperconduitsolidi?cationthatde??cantlytoabetterplexgrowthinteractionsatdomebuildingvolcanoes,:Bezymianny;volcanodeformation;monitoring;lavadome;in?ation;SARimaging;radarpixelo ,about200worldwide[1],generatelavadomesthatareoftencharacterisedbyhazardousexplosiveeruptionsthatinvolve?ankinstability[2].Asdomesgrow,theouter?anksoversteepenuntiltheycollapseandperilouspyroclastic?owsareproducedthatpurgedowntheslopes,a ectingregionsatkilometresdistancetothedome[3].Lavadomesarethoughttogrowbyinteractionsbetweenmagmainjectionsintothedome(.,endogenousdomegrowth)andtheadditionofextrusionlayersonthetopofthecarapace(.,exogenousdomegrowth)[4–7].Sofar,thesetwostylesofgrowthareconsideredasendmembers,plexitythatcouldbeinstrumentallyrecordedinnature,,Unzen,orSoufrièreHills[5–7].Geophysicalsensorsoftenobserveshort-termprecursors,suchasseismicity,enhancedrockfallintensity,alternatingvolcanicgasemissions,,11,1278;doi::..,11,12782of23whenmagmareachesshallowdepthspriortoimminenteruptions[8].InterferometricSyntheticApertureRadar(InSAR),forexample,providesanestimationofprecursorydeformationonthemmtocmscaleovershort[9]andlong[10]periodsoftime,yetthetechniqueisa ectedbyatmosphereanditislesse ectivewhenvolcanoesarecoveredinsnoworwhengroundmotionexceedsthemaximumdetectabledeformationgradient[11].Moreover,determiningdeformationthatisassociatedwithdomebuildingvolcanoes,andthereforeidentifyingtheparticularitiesoflavadomegrowth,-situand,moreoften,remotesensingapproaches,suchasground-?xedcameras[12,13]orsatelliteradaramplitudeimages[14–16].–2008domegrowthepisode,whichallowedforthespatialandtemporalquanti?cationofendogenousandexogenousgrowth[17].Thevalueofsatelliteradarobservation,ontheotherhand,wasunderlinedduringthe2010cataclysmiceruptionatMerapi,whereSyntheticApertureRadar(SAR)amplitudescenesprovidedvitalsupportintheearlydetectionofdomegrowthandtheassociatedhazardassessment[14].TheweaknessesofSAR,efromthepoorrevisitperiod(severaldays),andgeometricdistortionsthatlimitinterpretationsduetotheregionsofshadow,foreshortening,andlayovere ,weintegratethestrengthsofthesetechniquestobetterunderstandthecurrentdomegrowthmechanismsactingduringtheJanuary2016–’s?ank,andweemployapixelo settrackingalgorithmonhigh-resolutionTerraSAR-?edatleastsevenmonthsbeforethe?rstdocumentede usiveeruption,?ndingmayalsoprovideabasisfordomegrowthobservationatotherdomebuildingvolcanoes,,domebuildingvolcano(~.)thatislocatedwithintheKlyuchevskoyGroupofVolcanoes(KGV)inKamchatka,Russia(Figure1a).ItisthoughtthatBezymianny,Klyuchevskoy,butalsothefurthersouthlocatedTolbachik,derivetheir?uidsfromacommondeepparentalmagmachamberat30kmdepth[18,19].DuringascentbeneathBezymianny,thevolatile-richmagmaarrestsatdi erentlevels,whicharelikelyassociatedwithmagmachambers,atapproximately15kmand5km,[18,20–22].Bezymiannyisarelativeyoungvolcano()whosegeologichistorywascharacterisedbymajoreruptiveactivitybetween2400and1700and1350–1000beforepresent[23].In1955–1956,Bezymiannyre-emergedwithaphasethatculminatedinacataclysmicsectorcollapseanddirectedlateralblasteruption,whichleftbehindahorseshoe-shapedcratermoat(Figure1b)[24–26].[27–29].Afterthe1956eruptionatBezymianny,near-continuous,mostlyendogenousdomegrowthstartedto?llthehorseshoeshapedcrater?ooruntil1965[24,25,30,31].Since1977,onaverage,1–2explosiveeruptionsoccurred,yclicbehaviour:initially,daystoweekslong-lastingsummitplugextrusionswerefollowedbyVulcanianexplosionsandpyroclastic?ows;eruptionstheneventuallyceasedwithlava?owemplacementsanddegassinguntilthevolcanobecamequietagain[30,31].Onlyfeweruptionsduringthe19800sand19900sweresolelycharacterisedbye usiveactivity,orlava?owemplacementspriortoexplosions[30].By2004,Bezymianny’pletelycoveredwithlava?ows,andmultipleexplosionsonitstopbetween2005and2012anewrelativelystablesummitcrater[19,32,33].Afterfouryearsofquiescence,activityinitiatedin2016andwasfollowedby:..,11,,11,xFORPEERREVIEW3of24longeMarch usiveactivity(5December2016–9March2017)andtwostrongexplosiveeruptionson9March2017)andtwostrongexplosiveeruptionson9Marchand16June2017[31].Today,theand16June2017[morphologyofBezymiannyischaracterizedbytheremnantsofthe1956sectorcollapse31].Today,themorphologyofBezymiannyischaracterizedbytheremnantsofthe1956sectorcollapseamphitheatre(the“somma”)andthepresenceofanapproximately500–600mamphitheatre(the“somma”)andthepresenceofanapproximately500–positedomepositedomeinthecentre(Figure1b).inthecentre(Figure1b)..((aa)Shadedreliefmap(TanDEMdigitalelevationmodelfrom2014)ofBezymiannyandits)Shadedreliefmap(TanDEMdigitalelevationmodelfrom2014)ofBezymiannyanditsclosestneighbouringvolcanoesinKamchatka,FarEastRussia(starininsetmap).LocationoftheclosestneighbouringvolcanoesinKamchatka,FarEastRussia(starininsetmap).Locationofthetime-lapsecameraandfootprintoftheTerraSAR-X(TSX)satelliteareindicatedbyCAMandblacktime-lapsecameraandfootprintoftheTerraSAR-X(TSX)satelliteareindicatedbyCAMandblackbox,?ightandline-of-sight(LOS)directionsofthedescendingbox,-of-sight(LOS)directionsofthe(DSC)andascending(ASC)TSXsatellites,,asthispaperdescending(DSC)andascending(ASC)TSXsatellites,,(b).(b)Close-(b).(b)Close-upreliefmapofBezymiannyshowingthe1956collapsescar(somma),thesubsequentlyevolvedcentralshadedreliefmapofBezymiannyshowingthe1956collapsescar(somma),thesubsequentlyevolvedcompositedome,?leA-A’indicatesapproximate1956collapseplanepositedome,-A’indicatesapproximate1956(dashedline).Smallletterpro?lesa–a’andb–b’showlandmarksthatareusedforscaleapproximationcollapseplane(dashedline).Smallletterprofilesa–a’andb–b’,multiparametricandlong-,,multiparametricandlong-termmonitoringisKamchatkanBranchofGeophysicalSurvey[challengingduetotheremotenessofthevolcano34],allowingforeruptionprecursoridenti?,seismicmonitoringweeksbeforeeruptions[wasrealizedbytheKamchatkanBranchofGeophysicalSurvey35].Enhancedfrequencyofrockfallsfromthecentraldomeiseasilyidenti?ed[34],allowingforeruptionprecursorandindicativeofrenewedactivityatBezymianny[identificationdaystoweeksbeforeeruptions[35].Enhancedfrequencyofrockfallsfromthecentral35,36].Besidescharacteristictremorsandhighfrequencyseismicsignatures,long-period(LP)seismicitymayalsoidentifyheraldingeruptions[domeiseasilyidentifiedandindicativeofrenewedactivityatBezymianny[35,36].Besides19],butearlierstudiessuggestthatonlyoneoutoffoureruptionswereprecededbyLPevents[characteristictremorsandhighfrequencyseismicsignatures,long-period(LP)seismicitymayalso36].EruptionsatBezymiannyaresometimesconcurrentwithactivityatKlyuchevskoy,whichmaystronglyidentifyheraldingeruptions[19],butearlierstudiessuggestthatonlyoneoutoffoureruptionswereobscuretherecordsofBezymianny’sseismicactivity[35,36].precededbyLPevents[36].EruptionsatBezymiannyaresometimesconcurrentwithactivityatKlyuchevskoy,whichmaystronglyobBesidestheroutineseismicmonitoring,increasingimportancehasbeenascribedtoremotesensingscuretherecordsofBezymianny’sseismicactivity[35,36].:?rst,generalmonitoringoftheBesidestheroutineseismicmonitoring,increasingimportancehasbeenascribedtoremotevolcanicactivitiesexploitingcost-freedataandwebportals;second,experimentalandscienti?cin-:first,,hermalthevolcanicactivitiesexploitingcost-freedataandwebportals;second,experimentalandscientificEmissionandRe?ectanceRadiometer(ASTER)havebeenepisodicallyusedtostudyheatradiationin-,theinstrumentsoftheAdvancedduringeruptionsofthelastfewdecades[hermalEmissionandReflectanceRadiometer(ASTER)hav37–39].Overall,thesestudieshaveidenti?edenhancedebeenepisodicallyusedtomonprecursorforBezymianny’seruptions,althoughtwostudyheatradiationduringeruptionsofthelastfewdecades[37–39].Overall,thesestudieshaveeruptionswerereportedwithoutaprecedingchangeinthethermallevel[39].monprecursorforBezymianny’seruptions,althoughtwoeruptionswerereYet,existingreal-timemonitoringmethods,aswellasevent-basedobservations,,weinvestigatewebcamimagesand[39].Yet,existingreal-timemonitoringmethods,aswellasevent-basedobservations,,weinvestigatewebcamimagesand:..,11,12784of23high-resolutionsatelliteradardatathatcovertheDecember2016–