文档介绍:情境联想
这是指回到问题的情境中去思考问题的方法。
例有一个运动场(如图28-5),两头是半圆形,中间是长方形,这个运动场的周长是多少?面积是多少?(适于六年级程度)
解:有的同学对图中的两个“72米”,要不要作为周长来计算拿不定主意。我们可以联想在操场或运动场赛跑时的情境,就知道两个“72米”在赛跑时是不要跑的,因此跑道的长度是:
87×2+×72÷2×2
=174+
=(米)
运动场的面积,也可联想实际情况而正确地算出:
答略。
(九)因果联想
*例如图28-6,△ABC是等腰直角三角形,斜边BC=6cm,求阴影部分的面积(适于六年级程度)
解:我们从条件与问题所涉及的角和边展开联想:
(1)因为△ABC是等腰直角三角形,所以联想到,
∠1=∠2=45°
(2)因为AD是斜边上的高,所以联想到,
(5)因为阴影部分的面积,等于等腰直角三角形面积减去两个扇形面积,所以得出:
9-=(平方厘米)
答略。
第二十九讲直接法
解应用题时,不用经过严密的逻辑推理,而是凭借已有的知识经验,迅速地解题,就是在运用直接法。
以直接法解题的思维过程是快速缩小问题所涉及的范围,接触事物的本质,打开解题的突破口。有些用一般方法解答要用四五步,甚至更多步计算才能求出结果的应用题,用直接法解答时,只用一两步计算就可以求出结果。
学习以直接法解题,可促进思维的灵活性、敏捷性和创造性。
(一)凭借数目的特点
数进行计算时,一般通过心算就能得出结果。
解应用题时,凭借这些数的这种特点,发现题目的本质,就可用简捷的方法解出复杂的问题。
一般解法:
6×3=18(天)
答略。
一般解法:
=1(千克)
所以瓶里原来有油: