文档介绍:凭借图形
当我们读过一道应用题后,有时头脑中立刻闪现出表示题中数量关系的图形,凭借这个图形我们会想到解答此题的方法,而不必仔细分析推理;有时刚刚画出表示题中数量关系的图形时,我们就领悟到解题方法。在这些情况下,得的解题方法往往比较简捷。
例1 在校运动会上,某班除4人没参加任何项目外,有26人参加了田赛,有30人参加了径赛,有12人既参加了田赛,又参加了径赛。这个班有学生多少人?(适于高年级程度)
一般解法:
(26-12)+(30-12)+12+4=48(人)
直接法:从图29-1可看出,12包含在26内,也包含在30内。从26与30的和中减去12,再加上4,就得到全班学生人数:(26+30-12)+4=48(人)
答略。
例2 ,底面半径是3厘米,求这个圆柱体的体积。(适于六年级程度)
一般解法:
直接法:按照图29-2把圆柱体的底面分成若干个相等的扇形来切割圆柱体,然后把切开的圆柱体拼成近似长方体的形状。这个长方体的底面积是圆柱体侧面积的一半,高等于圆柱体底面的半径。所以这个圆柱体的体积是:
÷2×3=(立方厘米)
答略。
这批水泥一共是多少吨?(适于六年级程度)
一般解法:
直接法:从图29-3中可以看出,全部需要运来的水泥被分为5份,剩下
所以,这批水泥一共是:
15×10=150(吨)
答略。
(八)凭借从整体上考虑
有些应用题,如果把问题分成许多细节,一步一步地分析、推理,有时要走弯路,陷入困境。如果不把问题分成许多部分去研究,而是从整体上、从全局考虑,往往会迅速发现问题的实质,很快解决问题。
*例1 由1024名运动员参加的乒乓球个人冠军赛,采用输一场即被淘汰的单淘汰制。共需安排多少场比赛?(适于高年级程度)
……最后一场是冠军赛,共应进行:
512+256+128+64+32+16+8+4+2+1
=1023(场)
直接法:从整体上考虑,每场淘汰1名运动员,要决出冠军,就要淘汰1023名运动员,所以共需进行1023场比赛。
答略。
*例2 走一段路,甲用40分钟,乙用30分钟。如果甲出发5分钟后乙再出发,乙经过多长时间才能追上甲?(适于高年级程度)
一般解法:
直接法:走这段路,甲、乙分别用40分钟和30分钟,则甲、乙走到这段路中点用的时间分别是20分钟、15分钟。因为甲提前5分钟出发,所以当甲用20分钟走到这段路的中点时,乙用15分钟也走到这段路的中点,也就是说乙追上了甲。乙追上甲用的时间是乙走这段路所用时间的一半。
30÷2=15(分钟)
答略。
*例3